An International Peer Reviewed & Referred

SCHOLARLY RESEARCH JOURNAL FOR INTERDISCIPLINARY STUDIES

SYNTHESIS OF SOMEMETAL COMPLEXES AND ITS STRUCTURAL INVESTIGATION

Balbir Singh, Ph. D.

Former HOD, Dept. of Chemistry. SD College Pathankot.

Preparation and the structural investigation of someorgano metallic compounds using triaryl phosphinetelluride as a ligand.

Scholarly Research Journal's is licensed Based on a work at www.srjis.com

Introduction:--

'The field of coordination chemistry is growing exponentially. Particularly in the last two decades development in bio -organic chemistry has gathered much momentum the subject. Thus the present topic has been selected.

The complexing nature of organophosphineis due to the lone pair of electrons on the phosphorous atom. But when phosphorous attaches with elements (O, S, Se, Teetc) it becomes pentavalent and it makes double bond with the metal thus making it to act as a donor. Due to this bonding P becomes slightly positive. And will result in the contraction of its 3d-orbitals. The ii charge cloud is expected to be distorted in favour of metal thus making the metal an excellent5 donor and a good complexing agent. Survey study shows that various metal complexes of phosphine oxide, sulphide, & selenide have been reported where as very little efforts have been made to prepare phosphine telluride complexes (1—4). Te is short of two electrons than octet, high electronegativity and small size show it has non-metallic covalent chemistry.

In the present series of investigation Cu ll, Ni ll,Coll, Cr lll and Zn ll halides have been chosen as metal ions to form complexes with tri-xylyl phosphine telluride.

Experimental:----IR spectra is recorded on Perkin-Elmer-577 IR spectrometer. (range 200--4000/cm) . Percentage composition of the complex is determined by usual gravimetric &instrumental analyser method. Magnetic moment is measured by Guoy's balance method.

Preparation of ligand:—The recrystallizedtriphenylphosphine has been dissolved in xylene and to this added calculated amount of tellurium metal. The mixture is refluxed on water bath for 2 to 3 hours. The contents are allowed to cool and filtered. The filtrate is concentrated to give crystals of titled complex which are recrystallized from dry alcohol.

Preparation of complexes:—A ligand is dissolved in minimum quantity of dry alcohol and the salt of metal M (M= CoCl2,NiCl2,CuCl2,CrCl2and ZnCl2) in minimum quantity of water. Both are mixed in equimolar quantity in a round bottomed flask fitted with water condenser. The contents were refluxed for 3 to 4 hours. Contents are then removed stirred well and allowed to stand overnight. Complex is separated out which was recrystallized from dry alcohol.. Crystals are filtered & dried gently in the folds of filter papers.

TABLE 1

Accienm	liga				Cu(l				Ni(l				Co(l				Cr(l				Zn(ll			
Assignm									`				,				,				ZII(II			
ent	nd				1)				1)				1)				ll))			
C	3047				3046				304				304				304				3048,			
H,stre	,m				,S				0,s				7,s				8,s				vw			
C=	1478				1472				147				157				147				1478,			
С,	,v s				,(v s)				5,v				6,v				3,v				S			
stre					, ,				s				s				s							
C	1305	119	111	109	1310	118	109	103	131	119	109	103	131	119	109	103	131	109	109	108	1315,	1190	110	100
H,inplan	,s	0.s	0,v	3,v	,v s	8.s	7,v	0,s	1,s	1,s	7,v	0,s	0,s	2,s	8,v	1,s	5,v	2,s	0,s	0w	w	,w	8,v	5,
e defor	,	-)	S	S	,	-)	s	- ,-	,	,	s	-)	-)	,	s	,	s	,	-)-			, ···	S	,
C	759,	723,	698,	5	751,	741,	718,	698,	744,	710,	702,	620,	745,	710,	702,	620,	746,	719,	698,	609,	740,s	720,	699,	621
H,outpla	s	v s	v s	630,	v s	S S	v s	v s	v s	V S	v s	s	v s	V S	v s	s 520,	s	sh	s	s	740,3	m	m	,W
	8		v s	,	V S	5	V S	V S	V 5	V S	V S	8	V 5	v s	V S	3	8	511	8	5		1111	1111	,w
ne defor		s69		m																				
		8, v																						
		s6																						
C	510,				507,	503,			508,	504,			508,	503,			503,				512,v	498,		
P,asym	V S				sh	V S			sh	V S			sh	VS			w				S	S		
C	451,				448,	432,			446,	430,			445,	420,			450,					450,		
p,sym	S				S	S			s	S			s	S			sh					w		
P	440,				427				435,				437,				435,					426,		
Te,stre	s				,v s				v s				v s				v s					vs		
M					378,				350,				351,				352,					392,		
X,stre					m				w				w				s					m		
MTe,			_	_	220,	_		_	206,				206,		_		221,			_	_	309,	_	
stre					v s				m				m				S					S		

stre= streching	m= medium
asym=symetric	w= wesk
sym=symetric	v w=veryeesk
defor= deformation	sh= soldier
v s=very strong	

TABLE 2

compl ex	eleme nts	metal	halogen	carb an	hyddro gen	phosphorous	telluri um
v	>	(theo)obs	(theo)obs	(theo)obs	(theo)ob s	(theo)obs	(theo)obs
ligand			'	(55.49)55.59	(3.85)3. 94	(795)7.97	(32.75)32.80(28.05)28. 12
CuCl2 comple	X	(6.48)6 54	(7.79)7.84	(47.53)47.62	(3.32)3. 33	(6.81)6.87	(28.05)28.13
NiCl2 c	complex	(6.45)6.49	7.79)7.83	47.54)47.60	(3.32)3. 41	(6.81)6.87	(28.06)28.12
CoCl2	complex	(3.92)3.97	3.97)4.01	(48.83)48.88	(3.41)3. 46	(6.99)7.00	28.82)28.89
Cr comple	Cl2	3.75)3. 79	(3.79)4.18	(51.05)51.11	(3.57)3. 63	(7.31)7.31((30.12)30.21
ZnCl2	complex	(7.13)7.20	(7.20)7.74	(47.20)47.30	(3.30)3. 34	(6.70)6.72	(27.85)27.91

Elemental analysis					
theo = theoretical					
obs = observed					

TABLE 3

compond		stocheonetric		m.pt c.grade	colo	ur
	ratio					
Cu(ll) com	pond	CuCl2.4Ph(CH3)	2PTe,	238	ligh	t
		1:4			blue	,
Ni(ll) comp	ond	NiCl2.2Ph(CH3)2	2PTe, 1	240	blue	
		: 2				
Co(ll) comp	pond	CoCl2.2Ph(CH3)	2PTe,	244	inte	nce blue
		1:2				
Cr(lll) compond		CrCl3.3Ph(CH3)	2PTe, 1	222	orai	nge yellow
		:3				
Zn(ll) com	pond	ZnCl2. Ph(CH3)	2PTe, 1	230	whi	te
		:1				

TABLE 4

complex	mag.moment (BM)	stereo chemistry
Cu(ll)complex	1.9	octahedral
Ni(ll)complex	3.1	tetrahedral
Co(ll)complex	4.82	tetrahedral
Cr(lll)complex	3.86	tetrahedral
Zn(ll)complex	diamag.	bridged

JULY-AUG 2016, VOL-4/25 www.srjis.com Page 2515

Discussion: ----

- 1) In triarylphosphinetellurideligand, Te has alone pair which it can use for coordination. The basic character of ligand is increased by two methyl groups due to its inductive effect. IR spectra of two alkyl groups(of xylene) in the ligand remains same due p ii—dii bonding between P &Te.
- 2) Vib. of the aromatic ring remain the same both in the ligand and the cimplex showing the ring is intact in the complex.
- 3) Metal tellurium frequencies observed in the complexes which are absent in the ligand shows that metalcoardinates through Te.
- 4) Metal halide frequencies are lower in complexes than in metal halide which further supports Ml—Telinkage.
- 5) Lower wave number observed in case of Zn complex suggests the bridged structure through halogen. The same is further suggested by its diamag. Character (due to d10 config.)thus sp3 hybridisation used by Zn and formatjon 1:1 complex. Mag character of complexes show that Cu(ll) complex is octahedral and Ni(ll),Co(ll)&Cr(ll) has tetrahedral geometries.

References: ---

SAhrland, J Chatt and NR Devies, Quart Rev. Chem. Soc. 12,(1988)265

G E Coates, J. 1951, 2003

R G Pearson, J. Am. Chem. Soc. 85(1963), 3533.

C K Jorgenson, Inorg. Chem. 2(1964)1201